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Use WGH results for values of 2D;/\ for which curves
exist. These curves are given in Fig. 7 and in Fig. 6.1-10
of the WGH, where the appropriate changes in notation
are the same as those indicated above for parameter d’.
For all other values of 2D;/N and for Zy/Z4:<1.0, one
can alternatively interpolate between the curves or em-
ploy the MRI theoretical expressions, appropriately
modified. This modification consists of computing # via
equivalence relation 1a) of Table 111, where #’ is given
by (2), d’wgr has been discussed above, d is obtained
from relation 4a) of Table 11I, and X,/Z, is given by
(3). For Zy/Zyu>1.0, it is probably advisable to use
WGH results as the MRI correction procedure was not
checked in this range. Excellent agreement between the
design and actual values should be obtained.

C. Parameter d—Reference Plane Shift in Main drm

Here the recommendation to be made is a hybrid one.
The IBM experimental data is considered the most
reliable. The MRI experimental data appears to
vield a value somewhat smaller than expected. For
Zo/Zpe<1.0 and for all values of 2D;/\, interpolate
between IBM curves (extrapolate curves if necessary).
For Zy/Z>1.0 and for all values of 2D;/\ use “Modi-
fied MRI Theory,” which requires that d be computed
from equivalence relation 4a) of Table III, where
Xa/Zy is given by (3). A fair prediction of the value of
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this parameter should be obtained by utilizing the
above procedure except possibly in the particular region
where 2D1/A>0.7 and Zou/Zp:>1.0. In this region only
a helpful upper bound is available.

D. Parameter B—Shunt Susceptance

The curves obtained by the “Semi-Empirical Pro-
cedure” and plotted in Fig. 11 should be utilized to de-
termine the value of the parameter B. This is also a
hybrid recommendation as these curves were drawn by
combining IBM experimental data for parameter d, for
the range Zy/Zp; <1.0 and for all values of 2D,/\, with
“Modified MRI Theory.” The latter requires the com-
putation of B via equivalence relation 2a) of Table 111,
where the parameters occurring in this relation have
been discussed above. The curves are to be taken as
fairly reliable except for 2D1/A>0.7 and Zy/Zgp> 1.0,
where the experimental drop-off in d would indicate a
lower value for B.

ACKNOWLEDGMENT

The authors are indebted to George F. Bland of IBM
for his initiation of this study, his many helpful sug-
gestions, and his continued interest and encouragement.
They are also grateful to William R. Jones, formerly of
IBM, who contributed substantially to this effort in its
initial stages,

The Use of Exponential Transmission Lines in
Microwave Components®

CHARLES P. WOMACKY, MEMBER, IRE

Summary—This paper describes some techniques for utilizing
exponential transmission lines in microwave components in order to
reduce element lengths, and hence size and weight, and to signifi-
cantly increase the operating frequency range. Formulas are devel-
oped which relate line length to the frequency and rate of taper for
transmission line resonators, and a nomogram is included for easy
determination of spurious frequencies. Additional formulas are given
for the distributed representation of lumped elements using exponen-
tial sections of both coaxial and strip transmission line, and their use
described in application to microwave filters and related components.
In addition, the paper describes how unusually large rejection band-
widths can easily be obtained by proper selection of the individual
element lengths and rates of taper.
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INTRODUCTION
]:[N THE LAST few years there has been a growing

awareness of the need for new designs of microwave

components which combine the advantages of de-
creased size and weight, ease of fabrication, and ex-
tended coverage of the microwave spectrum. In this
paper various techniques for designing microwave com-
ponents using exponential transmission line sections
will be presented and their advantages and limitations
will be considered. In particular it will be shown that
the use of exponential sections of strip transmission line
in the design of microwave filters offers significant sav-
ings in volume and weight, variable form factors, greatly
extended rejection bandwidths, and the same ease of
construction as with other strip-line components. For-
mulas are developed which relate line length to the fre-
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quency and rate of taper for transmission line reso-
nators, and a nomogram is included for rapid determi-
nation of spurious frequencies. Additional formulas are
developed for the distributed approximation of lumped
elements using exponential sections of line, and for the
Q of resonators.

Techniques are also discussed for reducing the over-
all length of coaxial cavities commonly employed in RE
amplifiers. It is shown that by approximating the ex-
ponential taper with a linear taper, and hence eliminat-
ing some of the difficulties in fabrication, reductions in
length of 15-25 per cent are readily obtained. The trans-
former properties of exponential lines will not be con-
sidered.

GENERAL TrRanNsMI1ssION LINE EQUATIONS

For the TEM mode of propagation the differential
equations representing the voltage V(x) and current
I(x) for nonuniform transmission lines are

dv/ds + Z(x)I = 0,
dI/dx + Y(x)V = 0, (1)

where Z(x) and Y(x) are the series impedance and
shunt admittance per unit length of line, respectively,
and they are arbitrary and continuous functions of the
position x along the line.

Differentiation of (1) vields the familiar set of second-
order linear differential equations

a*v/dxt — (1/Z2)(dZ/dx)(dV/dx)y — YZV =0
&I/dx: — (/Y)Y /dx)(dl/dx) — YZI =0. (2)
Sugait! has shown that these second-order linear differ-

ential equations yvield a general Riccati’s differential
equation

dr/dy + Pi(x)r + Qu(x)7* = Qu(x), 3
where 7 is the reflection coefficient defined by
) = TR
and
Ko(x) = VZ(@)/Y (@)
Pi(x) = — 2VZ(®) ¥ (%)
Qi(x) = — TR (dKo/dx). (5)

There is much in the literature® pertaining to both
approximate and exact solutions for nonuniform trans-
mission lines. A method recently proposed?® utilizes two

11, Sugai, “The solutions for nonuniform transmission line prob-
lems,” Proc. IRE, vol. 48, pp. 1489-1490; August, 1960.

2 H. Kaufman, “Bibliography of nonuniform transmission lines,”
IRE TRANS. ON ANTENNAS AND PROPAGATION, vol. AP-3, pp. 218~
220; October, 1955. .

s 1. Sugai, “A new exact method of nonuniform transmission
lines,” Proc. IRE, vol. 49, pp. 627-628; March, 1961.
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newly discovered transforms to reduce (3) to a first-
order linear differential equation.

This paper is concerned more specifically with the
exponential type of nonuniform transmission line which

1s defined by

Ko(x) = Koae?”; 620, (6)
where K is the impedance level of the line at x =0, i.e.,
the low-impedance end, and 6 is the rate of taper.

Combining (3) and (6), and assuming negligible dis-
sipation (R=G=0), the differential equation for an ex-
ponential transmission line is

dr/dx — 2vyr + (8/2)(1 — #%) = 0, (7)
whose solution is easily found to be

() = 2v/5 + 4 1 — Btanh (6.4x/2) ®
iy) = / - ’
K {anh (34x/2) — B

where

A2 =14 dy2/8
A — (ro — 2v/9) tanh (61,2
B = ( 0 / ) ( ) (9)‘
A tanh (641/2) — (vo — 2v/5)
v =78 =j(2x/\)
and 7(}) =7, is the value of the reflection coefficient
evaluated from the boundary conditions.

EXPONENTIAL TRANSMISSION LINE RESONATOR

It will now be shown that the particular nonuniform
lossless transmission line presently under discussion can
support standing waves just as does the ordinary uni-
form line, and that definite practical advantages such
as shorter lengths and better form factors are obtain-
able. The type of terminations commonly employed to
cause complete reflection consist of the open cir-
cuit, short circuit, and pure reactance. In each case
170[ =41, so that subject to the restrictions imposed
by the solution of (8), the exponential line should per-
form as a resonator.

Consider an antiresonant® section of short-circuited
exponential line. This will require a short circuit at the
position x=1/ as shown in Fig. 1(a). Under these circum-
stances,

Yo = — 1, 7’(0) = 7’(00)z=0 = - 1, (10)
so that from (8)
tanh (1 + 442/62)12(51/2) = (1 + 4y%/8%)12.  (11)

4 An antiresonant line shall be defined as one whose sending-end
impedance is infinite when its output is suitably terminated so as to
cause total reflection of the incident wave. It may be compared to a
lumped LC parallel circuit at resonance. Similarly, a resonant line
shall be defined as one whose sending-end impedance is zero for the
same load terminal conditions as above, It may be compared to »
lumped LC series circuit at resonance,
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(a) SHORT-CIRCUITED ANTI-RESONANT (b} OPEN-CIRCUITED RESONANT
LINE, LINE.

Fig. 1—Types of short- and open-circuited lines required for anti-
resonance and resonance, respectively (shown for strip-line).

Denoting the length of line required for antiresonance
by 1, and making use of the fact that y=733, (11) yields

_ nw+ tan™! (482/8% — 1112

w n=20,12--. (12)
B(1 — o8%/4p7)12
and )
— tan~! (48%/62 — 1)1/2
T A
lw,min = <—> (13)
(L—o/4g)  \4

Similarly, in the case of the resonant section of open-
circuited exponential line shown in Fig. 1(b),

r(0) =ro=+1

whereupon, if [, denotes the length of line required for
resonance, one finds

B (n + 1)r — tan—1(462/8% — 1)1/2
- B(1 — 87/48)
n=01,2 -

(14)

0

(15)

and

1
1 — —tan™1(48%2/8% — 1)1/2
T

(16)

A
lO,min = — I.
(1 — a2/4p7)' 2
The corresponding lengths of open- and short-cir-
cuited sections of exponential line required to produce
antiresonance and resonance, respectively, are equal
and given by

(” + Dr 1
= m4ﬂz>1/z E’ n=012--- (A7)
and
N2
llnin = WJ— . (18)

(1 — 0%/467)

The significance of these results can be appreciated
upon examination of Fig. 2 wherein (13) and (16) are
plotted. In the case of resonators corresponding to
curve b of the figure, for example, it is theoretically pos-
sible to obtain elements of length v/w for values of
8/B=2, or approximately 37 per cent shorter than the
corresponding uniform line resonator at the same fre-
quency. This is a conservative figure, however, since the
wider line widths at the open-circuited ends of the reso-
nators result in pronounced fringing of the electric field.
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2.0

0.5 (a) 2=4p FOR
© =g FOR Z_ :® AND 820
{b) 27485 FOR Z_ =0 AND 82 O
=0, FOR

Fig. 2—Minimum lengths of open- and short-circuited sections of
transmission line required for resonance and antiresonance, re-
spectively.

This is, in effect, equivalent to a capacitive loading of
the ends of the resonators, the result being that the
electrical lengths of the lines are increased.

Calculations of the discontinuity effects of abruptly-
ended center conductors in strip-line have been given
by Altschuler and Oliner.® When applied to the open
ends of exponential strip-line resonators, further reduc-
tions in length of approximately 2—-10 per cent are easily
obtained. For example, the length of an exponential
transmission line resonator constructed in strip-line was
40 per cent shorter in length than the corresponding
uniform line resonator at the same frequency, and there
was no apparent degradation of Q-factor.

Exponential transmission line resonators can be use-
fully employed in many microwave strip-line compo-
nents where decreased size and weight, ease of fabri-
cation, and extended coverage of the microwave spec-
trum are important. The latter requirement, for ex-
ample, is expressed in the manner by which the designer
has control over the location of annoying spurious re-
sponses. Whereas the spurious responses of uniform
transmission line resonators occur for frequencies which
are integer multiples of the frequency of resonance, they
are not so determined in the case of exponential trans-
mission line resonators.

Examination of (13) shows the manner in which the
spurious frequencies of exponential resonators are re-
lated to the ratio §/8, or alternatively, to the length and
rate of taper of the line. For convenience and as an aid
to the designer, the relationship of the first spurious fre-
quency fi to the resonant {requency f, and the physical
constants of the line for two practical resonators is given

5 H. M. Altschuler and A. A. Oliner, “Discontinuities in the
center conductor of symmetric strip transmission line,” IRE TRANS.
ON MIi1cROWAVE THEORY AND TECHNIQUES, vol. MIT-8, pp. 328-339;
May, 1960.



|
|

RATE GF TAPER

wonwowow

W o re e gn

27/X WHERE XA IS THE WAVELENGTH IN THE
TRANSMISSION LINE MEDIA

o
b

€ = RELATIVE DIELECTRIC CONSTANT

0.4

- 20
B Fao % &L —em
12—+
+
= I-; 1 ‘—"1 I
lo—f
-~ L -
g =
L% —
£ - 15
-
F -
L -
r ~ -
o8t ~
L ~ |
I -
+ -  }
- -~ I
06 RESONANT FREQUENCY OF RESONATOR
- FIRST SPURIOUS FREQUENCY =10
T MINIMUM LENGTH OF RESONATOR 07

o
o

Fig. 3—Nomogram for determining spurious frequencies of
an antiresonant and resonant resonator.

in the nomogram of Fig. 3. The advantages of using ex-
ponential resonators in microwave filters will become
apparent in the next section.

Exponential transmission line resonators can also be
employed in the coaxial cavities of RF amplifiers. Exact
exponential tapers for coaxial lines are difficult to con-
struct. Consequently the advantages of shorter resona-
tor lengths, and hence smaller cavity size and weight,
may not justify the increased production difficulties.
However, by approximating the exponential taper with
a linear taper, reductions in resonator lengths of ap-
proximately 15-25 per cent are easily obtainable. The
resultant ease of fabrication is evident.

In addition to decreasing the over-all length of trans-
mission line resonators, it is also possible to extend
their length. For example, if the rate of taper of the ex-
ponential resonator of Fig. 1(a) is negative, z.e., the line
is divergent, the length of the resonator is longer than
the corresponding length of uniform line resonator at
the same frequency and is given by (16).% This is par-
ticularly important at microwave frequencies where the
lengths of uniform resonators become quite small and
their fabrication in many instances unusually difficult.
Tables I and II list additional types of resonant and
antiresonant sections of exponential transmission line.

8 The dependence of the resonant length upon the sign of § may be
seen upon examination of (11).

Womack: Use of Exponential Transmission Lines

TABLE I

127

INPUT ADMITTANCE NEAR RESONANCE AND MINIMUM RESONANT
LENGTH FOR VARIOUS TYPES OF ANTI-RESONANT LINES

ANTL RESONANT LINES

MINIMUM RESONANT LENGTH

Yg = 5/7 ;1 Ao
. % & (7}
1
Yu"b_-:<}ﬁ~ t=S/m , do
= 3 )
2 ]
e 4><] e,
Qo
3
i-S/m
e {1 L
4
Yy — D——>
5 Aa/200
Yy b A_‘<
3
o=(|-32/4ﬁz)|/2
Ty =—1(1/K,,)[0 cor(ns(w/wa)) - a/zﬁ] Qo=@ {wo)

Yeo -1(|/x°,)[u COT(RS(w/wu))i- a/zs]

TABLE II

(1—-8'/45‘ )2
R
(1= 87485
$= ton ﬂ(4ﬂ: /8%

InpPUT ADMITTANCE NEAR RESONANCE AND MINIMUM RESONANT
LENGTH FOR VARIOUS RESONANT LINES

RESONANT LINES

MINIMUM RESONANT LENGTH

1-S/w ;)
Yu O—>j T ('To)
i
v. S/x Ao
34 > Qo 2
2
Y4 O_@ Stx Ao
— Qo
3
Yy —= ob—l
4 X0 /200
- °_1:<}__L
s
Yy M 23
== %

=1
Vo3 7101/ K ) | @ cot (RS(w/wy)) + 3/2,5]

-t
Yy 211 /Kog) [o cot (ns(m/u.,))— a/zﬁ]

Q= (I_82/4B£)l/l

Q= Q{wo)

R=(|-8’/4B')"'
(I_Bl/4ﬁ°2)lll

= tan (48,1 /8-yt
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APPLICATION TO FILTER DESIGN

Much of the present day microwave filter design is
based upon the approximate realization of a lumped
element design. This requires the judicious selection of
transmission line structures which exhibit the charac-
teristics of the lumped elements. In this regard one can
realize many structures equivalent to lumped elements,
but in general their selection is governed by many prac-
tical considerations. Specifically, the type of transmis-
sion line in which the filter is to be constructed, the fre-
quency band required to yield a valid approximation,
and the available volume and hence the physical size of
the elements are contributing factors. In addition, the
realization of distributed constant filters having suffi-
cient rejection bandwidths will enter into the choice of
possible structures. For example, in the design of band-
pass filters the elimination of the spurious responses,
and hence the attainment of large rejection band-
widths, is usually accomplished by connecting in cas-
cade with the filter an additional low-pass filter whose
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mission line. A short length of short-circuited transmis-
sion line can be made to approximate the behavior of a
lumped inductance, whereas a similar length of open-
circuited line can approximate a lumped capacitor. It
will now be shown that similar techniques utilizing short
sections of open- and short-circuited exponential line
can be employed, but with the resultant advantages of
reduced lengths, and in most cases, better form factors.

The solutions of (1) for V(x) and I(x) are found to be’

V{x) = a1e™ 4 qoe T
I(x) = bie"™ - boe T (19)
where

I? =+ (6/2) (20)

and, assuming a transmission line with negligible dissi-
pation (R=G=0), vi= —32

The input impedance of an exponential line of length
! terminated in an arbitrary load impedance Zy is

T Zi[x/l—_ﬁ/@_z —1(6/25)] + e—m[ZL V1= 824 +j-i _ 1]
7 — Ko1Koo Koz N %
s Zr 1 + Ky, |:\/1—*57/“4? + (8/21@} + ‘>Pl|:K“2 \/ﬁ"‘/ﬂf i 5 I—J
- — omi [ Ko . N
i ’ 4 98
Zn
—— /1 — 82/4p2 1 — j67./28K¢s) tanh Il
Ko1Kz KOQ\/ / s + ( J L/ 6 O) an
) ’ (21)
ZL

cutoff frequency lies above the pass band and below the
first spurious response.

Examination of (13) and (16) suggests that the
lumped constants of the prototype filter can be approxi-
mated using appropriate sections of exponential trans-
mission line, and that the element lengths will be signif-
icantly increased or decreased in comparison to those
obtained when only uniform lines are employed. More-
over, the control of the location of the spurious re-
sponses, as suggested upon examination of Fig. 3, indi-
cates the possibility of obtaining unusually large rejec-
tion bandwidths. The following sections will serve to ex-
ploit these possibilities further.

SHORT- AND OPEN-CIRCUITED EXPONENTIAL LINES

One familiar technique for approximating the char-
acteristics of a lumped reactance is to utilize appropri-
ate sections of short-circuited and open-circuited trans-

Koo .
—Zi V1= 848 + (1 + j3K4:/2821) tanh Tl
L

where Ko and K are the values of K(x) evaluated at
x=0 and x =/, respectively.

If the exponential line defined by (6) is terminated in
a load impedance Z5=0, (21) reduces to

Z, = jX
1
V1= 82/48% cot B/ — 8/48% — 8/28

When the section of exponential line is open-cir-
cuited (Z= «), the input impedance becomes
Zs = i = —jKun
iB
[(6/28) + /T — 82 /457 cot B/T — 8%/447).

= jK,

(22)

(23)

7 J. ]. Karakash, “Transmission Lines and Filter Networks,” The
Macmillan Co., New York, N. Y., p. 140; 1950.
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For short sections of line the slopes of the functions (22)
and (23) can be approximated respectively by

X o = Ko — (24)
ST e
1 /v
dB/dw = — —————, (25)
Koy 1+8/2

since S=uw/v.
Comparing (24) and (25) to the slopes of the react-
ance and susceptance functions for a lumped induct-

ance and capacitance, respectively, one obtains

Iy
L= Ky ———
1 —61/2
—2<58/8<+2
1 7

C = — .
Ko 14+ 61/2

Thus, short sections of short- and open-circuited expo-
nential transmission line can be used to approximate an
inductance and capacitance. The distributed representa-
tion of lumped elements is shown in Fig. 4.

Low-Q ResonaNT CIRCUITS

In many applications there is often the need to ap-
proximate low-Q lumped resonant circuits. This can
easily be accomplished by using exponential transmis-
sion line sections with values of the ratio §/8=2, in
which case the resultant line lengths may be signifi-
cantly reduced. For example, a parallel resonant cir-
cuit in shunt with the line can be approximated with
two sections of exponential line, one open-circuited and
one short-circuited, as illustrated in Fig. 5(a). For this
equivalence to be valid the lengths of the two stubs are
found to be

2/6
e=—"7c
14
KOI
2/8
S L (28)
L
VL/C

and

ZT = ZL + lc = 2/5 = 1/60, (29)

where C and L are the shunt capacitance and shunt in-
ductance of the lumped resonant circuit, respectively,
and Ko is the impedance level of the shorted expo-
nential line section at its low-impedance end.
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Fig. 4—Distributed representation of lumped
elements {shown for strip-line).

4 Le
Q0
=

L
R Lg_i_

{a) EXPONENTIAL ELEMENTS IN STRIP LINE {b} VARIATION OF {(a)

N
'

{d) VARIATIONS OF ABOVE

I

(c) LUMPED ELEMENTS

Fig. 5—Distributed exponential transmission line representa-
tion of low-Q lumped resonant circuits (|8/8] =2).

In many applications involving shorted line stubs it
may happen that the element lengths are too short to
permit an exact determination of the position of the
physical short circuit. This is especially true for strip
line construction. One technique for eliminating this
indeterminacy is to use the configuration shown in Fig.
5(b). There it is seen that the choice of a negative value
of 8 for the short-circuited stub yields an element
length which is significantly increased over that of the
uniform line stub. This permits a reduction in those
errors associated with the smaller elements. For this
configuration the element lengths are

2/
Kos
VL/C
2/
VL/C
1
K02 +

le

—1

(30)
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and

[: Koo 72 11
VL/C

g
VL/C
where Ko is the impedance level of the short-circuited

stub at its high-impedance end. Similar results are easily
obtained for the configuration shown in Fig. 6(d).

=1+ 1lc=

ARBITRARILY TERMINATED SECTIONS
oF EXPONENTIAL LINE

The occasion often arises in practice when one is inter-
ested in the input impedance of a section of transmis-
sion line of specified length which is terminated in rela-
tively large, or small, impedances. The inversion proper-
ties of A\/4 resonators constructed with uniform trans-
mission line, for example, are well known and some of
their applications have been discussed by various au-
thors.®? It will now be shown that similar properties
are obtained with exponential line.

With reference to (21) and Fig. 6(a) the input im-
pedance of a section of exponential line of length /., wmin
normalized with respect to the impedance level at the
input, and terminated in an impedance Z;, is

1y |5 /2B)G()] + §(8/80)G
7w (ol /BG4 6/B)G(w)

= — y (32
Koo [1 + (I 51 /ZB)G(CU)] + j(ZL,B,/Koxﬂ)G(w) ( )
where
() = tan [-5— fan-t \/W/a?——‘l] (33)
and
B =+/1—28/4p
Bo = Buv/1 — 8%/4Bo% (349
For Z;/Kpu>1, (32) simplifies to
Zo/Kos = jX(w)/Ko2 + Z/Ko, (35)
where
8]
— Glw) — 1
X(w) = Koz = Ko)F(&)) (36)
— G(w)

8 S. B. Cohn, “Direct-coupled-resonator filters,” Proc. IRE, vol.
45, pp. 187-196; February, 1957,

®S. B. Cohn, “Parallel-coupled transmission-line-resonator fil-
ters,” IRE TraNs. oN Microwave THEORY AND TECHNIQUES, vol.
MIT-6, pp. 223-231; April, 1958.
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Z >> Koz

|
o
X

(b)

Fig. 6—Exponential transmission line circuits which, for the terminal
conditions indicated, possess important inversion properties as
described in the text.

and

7 = KuKw/Z1. (37)

Similarly, the input impedance of the section of ex-
ponential line of length /. min shown in Fig. 6(b) when
terminated in an impedance Z KKy, is

1

Zs K01 = — 38
/ jKoB(w) + Ka Y (38)
where

Y = Z1/KuKo: (39)
and

ol

—— (w) - 1

1 28
Blw) = — = F(w)/Ko.  (40)
Ko 8
EG(w)

Examination of (35) and (38) indicates that the im-
pedance Z; at the load end of the resonators is re-
flected toward the input, and inverted with respect to
the product of the high- and low-impedance levels of
the line.'® Compare this to a A\/4 section of uniform line
which, when terminated in an appropriate load im-
pedance under similar conditions, is inverted with re-
spect to the square of the characteristic impedance Z.

The function F(w) is seen to depend upon the rate of
taper of the exponential line in such a manner as to
make the expressions (36) and (40) too unwieldy. For
convenience F(w) is shown in Fig. 7 for typical values of
the ratio §/8¢. For frequencies near w, the approxima-
tion

« — Wy

Flw) =m ) (41)

Wy

where

10 This property of the exponential transmission line can be used
to advantage for the design of band-pass microwave filters in order to
obtain shorter element lengths, greater rejection bandwidths, and
controllable form factors. A paper is presently being readied by this
author which presents the design formula for a class of strip-line
band-pass filters having exponential transmission line elements.
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t

Fig. 7—Variation of F(w) with {requency for
various values of the ratic §/8,.

tan~t+/4/C? — 1

m = esc? (tan'4/4/C? — 1)

V1= Cy4
P (42)
1 —4/C?
and
C=|3|/8 (43)

is quite accurate up to and including bandwidths of 30
per cent.

Q oF THE EXPONENTIAL RESONATOR

The calculation of the @ of an exponential resonator
has previously been presented,!! and the result expressed
in the form of an infinite series. It is the purpose of the
following discussion to obtain an expression for
which is in closed form, and hence more amenable to
calculation.

For any mode the Q of a resonator is uniquely defined

by the expression
f f f E maav
wolU 2

- = wo (44)

Wi R,
T
2

1 R. N. Ghose, “Exponential transmission lines as resonators and
transformers,” IRE TraNS. oN MicrROwWAVE THEORY AND TECHNIQUES,
vol. MIT-5, pp. 213-217; July, 1957.
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assuming that there are no losses due to the dielectric
material filling the volume of the cavity. The numerator
integral of (44) represents the energy storage in the mag-
netic fields at the instant when these are a maximum,
and the denominator integral represents the total of all
power losses in the walls. In order to evaluate (44) an
expression for the magnetic field must first be found.

For an exponential transmission line short-circuited
at the position x =/, the current at any point along the
line may be found from (19) and (20) to be

| I(x) i e~ 0/ ]:% sin (81 — Bx)

— Bcos (Bl — B‘@], (45)

where A4 is a constant. For the TEM mode the magnetic
field is given by

1
| 1, | =57;lzcx>l. (46)

For the present discussion let it be assumed that the
radius of the outer cylinder of the coaxial resonator is a
fixed constant b, and that of the center cylinder is a(x).
This is the situation most often encountered in practice.
Under these conditions the stored magnetic energy of
the resonator is

67]2/12

27!'2,82K()1f f f(x) 1’2

. [% sin (Bl - B_x) — B_ cos (Bl - B-x)_

2 A2 1 B2 8
)
ﬁEl‘xm 28 2 4

2 5 3
+ <§B + Z) cos 281 + —Z—sin zﬁz]. (47)

2
rdrdodx

The length of a short-circuited resonant line will be
given by (18). For this case (47) reduces to
A%

U, = . 48)
1K1 (

In order to determine the total power losses in the
walls, it is necessary to integrate the tangential mag-
netic field over all internal surfaces of the cavity.

That is,
RS I 27
BTN
Rs l 2
+7f f b
R,
7 L
SN
Ef a(l)

Hy

2
dodx
r=a{z)

HaS

2
d¢dx

@ A”d?’d¢

7d1’d¢.

¢

xT=
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Performing the indicated integrations the total power

loss of the cavity, for a cavity length given by (18), is

A’R, _ b b
F T LB Ko? {432 <eﬁ(5ml gtk a(0)>
G ) e
a(0) \1 +~2/48°/ L v 4
G5 ()l
b \1 -+ 8%/4pB2 b 432
AR,
w0 (49)
where
27
y ==

. (Kor — Ko2) + 6
n

and 8 is the rate of taper defined earlier. The present
definition of v should not be confused with that given
in (9).

The (Q-factor for an exponential coaxial resonator is
then
woUn  8mBUK g
I/VL )\Rs

F~1(5). (50)

The exponential resonator should reduce to a uniform
line resonator when the rate of taper § =0. For this con-
dition /=A/2, and Ku=K,, the characteristic imped-
ance of the uniform line. Then

b A A
F(0) = ,82<8 ln‘+——+~—>
a a b

s0 that

47K,

b A A\!
<8 In —+—+ —)
R @ a b
which is the Q for a uniform coaxial line resonator one
half-wavelength long.

EXPERIMENTAL RESULTS

A series of short-circuited antiresonant exponential
resonators were constructed and evaluated in order to
test the validity of the theoretical results before and
after suitable compensation for the end effects dis-
cussed earlier in the text. The resonators were con-
structed of strip line and designed to resonate at 500
Mc. Measured values of the resonant frequency dif-
fered from calculated values by as much as 8 per cent
before any correction for end effects was made, and less
than 2 per cent after correction. The results of these
measurements are shown in Fig. 8.

A simple band-pass filter was fabricated in order to
demonstrate the practicality of utilizing exponential
transmission line elements in microwave filter designs,
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Fig. 8—Effects of compensation on the resonant
length of an exponential resonator.
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Fig. 9—Frequency response of the experimental filter (6/8o=1).

The filter consisted of two magnetically coupled short-
circuited elements which were designed for antireso-
nance at a frequency of 500 Mc. In addition, the condi-
tion was imposed that the first spurious responses of
both elements should occur at 3.8f,. This fixed the value
of § and / as determined from the nomogram of Fig. 3.
The dashed line indicated on the figure illustrates the
use of the nomogram for the present case.

Fig. 9 shows the results of the experimental filter. It is
seen that the measured rejection bandwidth agrees
quite well with the anticipated value, and is 30 per cent
greater than that obtained when using uniform line
resonators. This suggests the possibility that, by select-
ing the nonuniform transmission line elements so that
their individual spurious responses occur at different
frequencies, it should be possible to design microwave .

filters which possess extremely wide rejection band-
widths.
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